Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 9064, 2024 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643236

RESUMEN

Frontotemporal dementia (FTD) is a debilitating neurodegenerative disorder with currently no disease-modifying treatment options available. Mutations in GRN are one of the most common genetic causes of FTD, near ubiquitously resulting in progranulin (PGRN) haploinsufficiency. Small molecules that can restore PGRN protein to healthy levels in individuals bearing a heterozygous GRN mutation may thus have therapeutic value. Here, we show that epigenetic modulation through bromodomain and extra-terminal domain (BET) inhibitors (BETi) potently enhance PGRN protein levels, both intracellularly and secreted forms, in human central nervous system (CNS)-relevant cell types, including in microglia-like cells. In terms of potential for disease modification, we show BETi treatment effectively restores PGRN levels in neural cells with a GRN mutation known to cause PGRN haploinsufficiency and FTD. We demonstrate that BETi can rapidly and durably enhance PGRN in neural progenitor cells (NPCs) in a manner dependent upon BET protein expression, suggesting a gain-of-function mechanism. We further describe a CNS-optimized BETi chemotype that potently engages endogenous BRD4 and enhances PGRN expression in neuronal cells. Our results reveal a new epigenetic target for treating PGRN-deficient forms of FTD and provide mechanistic insight to aid in translating this discovery into therapeutics.


Asunto(s)
Demencia Frontotemporal , Humanos , Progranulinas/metabolismo , Demencia Frontotemporal/tratamiento farmacológico , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Mutación , Epigénesis Genética , Proteínas que Contienen Bromodominio , Proteínas de Ciclo Celular/metabolismo
2.
FEBS J ; 2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38431776

RESUMEN

Neuroblastoma poses significant challenges in clinical management. Despite its relatively low incidence, this malignancy contributes disproportionately to cancer-related childhood mortality. Tailoring treatments based on risk stratification, including MYCN oncogene amplification, remains crucial, yet high-risk cases often confront therapeutic resistance and relapse. Here, we explore the aryl hydrocarbon receptor (AHR), a versatile transcription factor implicated in diverse physiological functions such as xenobiotic response, immune modulation, and cell growth. Despite its varying roles in malignancies, AHR's involvement in neuroblastoma remains elusive. Our study investigates the interplay between AHR and its ligand kynurenine (Kyn) in neuroblastoma cells. Kyn is generated from tryptophan (Trp) by the activity of the enzymes indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO2). We found that neuroblastoma cells displayed sensitivity to the TDO2 inhibitor 680C91, exposing potential vulnerabilities. Furthermore, combining TDO2 inhibition with retinoic acid or irinotecan (two chemotherapeutic agents used to treat neuroblastoma patients) revealed synergistic effects in select cell lines. Importantly, clinical correlation analysis using patient data established a link between elevated expression of Kyn-AHR pathway genes and adverse prognosis, particularly in older children. These findings underscore the significance of the Kyn-AHR pathway in neuroblastoma progression, emphasizing its potential role as a therapeutic target.

3.
Cell Host Microbe ; 32(3): 396-410.e6, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38359828

RESUMEN

Antibiotic resistance and evasion are incompletely understood and complicated by the fact that murine interval dosing models do not fully recapitulate antibiotic pharmacokinetics in humans. To better understand how gastrointestinal bacteria respond to antibiotics, we colonized germ-free mice with a pan-susceptible genetically barcoded Escherichia coli clinical isolate and administered the antibiotic cefepime via programmable subcutaneous pumps, allowing closer emulation of human parenteral antibiotic dynamics. E. coli was only recovered from intestinal tissue, where cefepime concentrations were still inhibitory. Strikingly, "some" E. coli isolates were not cefepime resistant but acquired mutations in genes involved in polysaccharide capsular synthesis increasing their invasion and survival within human intestinal cells. Deleting wbaP involved in capsular polysaccharide synthesis mimicked this phenotype, allowing increased invasion of colonocytes where cefepime concentrations were reduced. Additionally, "some" mutant strains exhibited a persister phenotype upon further cefepime exposure. This work uncovers a mechanism allowing "select" gastrointestinal bacteria to evade antibiotic treatment.


Asunto(s)
Antibacterianos , Escherichia coli , Humanos , Animales , Ratones , Cefepima , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias , Tracto Gastrointestinal/microbiología , Polisacáridos , Pruebas de Sensibilidad Microbiana , Mamíferos
4.
J Clin Invest ; 134(7)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38386415

RESUMEN

Translocation renal cell carcinoma (tRCC) most commonly involves an ASPSCR1-TFE3 fusion, but molecular mechanisms remain elusive and animal models are lacking. Here, we show that human ASPSCR1-TFE3 driven by Pax8-Cre (a credentialed clear cell RCC driver) disrupted nephrogenesis and glomerular development, causing neonatal death, while the clear cell RCC failed driver, Sglt2-Cre, induced aggressive tRCC (as well as alveolar soft part sarcoma) with complete penetrance and short latency. However, in both contexts, ASPSCR1-TFE3 led to characteristic morphological cellular changes, loss of epithelial markers, and an epithelial-mesenchymal transition. Electron microscopy of tRCC tumors showed lysosome expansion, and functional studies revealed simultaneous activation of autophagy and mTORC1 pathways. Comparative genomic analyses encompassing an institutional human tRCC cohort (including a hitherto unreported SFPQ-TFEB fusion) and a variety of tumorgraft models (ASPSCR1-TFE3, PRCC-TFE3, SFPQ-TFE3, RBM10-TFE3, and MALAT1-TFEB) disclosed significant convergence in canonical pathways (cell cycle, lysosome, and mTORC1) and less established pathways such as Myc, E2F, and inflammation (IL-6/JAK/STAT3, interferon-γ, TLR signaling, systemic lupus, etc.). Therapeutic trials (adjusted for human drug exposures) showed antitumor activity of cabozantinib. Overall, this study provides insight into MiT/TFE-driven tumorigenesis, including the cell of origin, and characterizes diverse mouse models available for research.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Animales , Ratones , Recién Nacido , Humanos , Carcinoma de Células Renales/patología , Carcinogénesis/genética , Transformación Celular Neoplásica/genética , Modelos Animales de Enfermedad , Factores de Transcripción/genética , Genómica , Neoplasias Renales/patología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Translocación Genética , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Proteínas de Unión al ARN/genética
5.
J Biol Chem ; 300(3): 105680, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272230

RESUMEN

Migration and invasion enhancer 1 (MIEN1) overexpression characterizes several cancers and facilitates cancer cell migration and invasion. Leveraging conserved immunoreceptor tyrosine-based activation motif and prenylation motifs within MIEN1, we identified potent anticancer peptides. Among them, bioactive peptides LA3IK and RP-7 induced pronounced transcriptomic and protein expression changes at sub-IC50 concentrations. The peptides effectively inhibited genes and proteins driving cancer cell migration, invasion, and epithelial-mesenchymal transition pathways, concurrently suppressing epidermal growth factor-induced nuclear factor kappa B nuclear translocation in metastatic breast cancer cells. Specifically, peptides targeted the same signal transduction pathway initiated by MIEN1. Molecular docking and CD spectra indicated the formation of MIEN1-peptide complexes. The third-positioned isoleucine in LA3IK and CVIL motif in RP-7 were crucial for inhibiting breast cancer cell migration. This is evident from the limited migration inhibition observed when MDA-MB-231 cells were treated with scrambled peptides LA3IK SCR and RP-7 SCR. Additionally, LA3IK and RP-7 effectively suppressed tumor growth in an orthotopic breast cancer model. Notably, mice tolerated high intraperitoneal (ip) peptide doses of 90 mg/Kg well, surpassing significantly lower doses of 5 mg/Kg intravenously (iv) and 30 mg/Kg intraperitoneally (ip) used in both in vivo pharmacokinetic studies and orthotopic mouse model assays. D-isomers of LA3IK and RP-7 showed enhanced anticancer activity compared to their L-isomers. D-LA3IK remained stable in mouse plasma for 24 h with 75% remaining, exhibiting superior pharmacokinetic properties over D/L-RP-7. In summary, our findings mark the first report of short peptides based on MIEN1 protein sequence capable of inhibiting cancer signaling pathways, effectively impeding cancer progression both in vitro and in vivo.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Proteínas de Neoplasias , Animales , Ratones , Movimiento Celular/genética , Proliferación Celular , Transición Epitelial-Mesenquimal , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Simulación del Acoplamiento Molecular , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Transducción de Señal , Humanos , Línea Celular , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología
6.
Bioorg Med Chem Lett ; 99: 129624, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38272190

RESUMEN

A structurally novel class of benzo- or pyrido-fused 1,3-dihydro-2H-imidazole-2-imines was designed and evaluated in an inositol phosphate accumulation assay for Gq signaling to measure agonistic activation of the orexin receptor type 2 (OX2R). These compounds were synthesized in 4-9 steps overall from readily available starting materials. Analogs that contain a stereogenic methyl or cyclopropyl substituent at the benzylic center, and a correctly configured alkyl ether, alkoxyalkyl ether, cyanoalkyl ether, or α-hydroxyacetamido substituted homobenzylic sidechain were identified as the most potent activators of OX2R coupled Gq signaling. Our results also indicate that agonistic activity was stereospecific at both the benzylic and homobenzylic stereogenic centra. We identified methoxyethoxy-substituted pyrido-fused dihydroimidazolimine analog 63c containing a stereogenic benzylic methyl group was the most potent agonist, registering a respectable EC50 of 339 nM and a maximal response (Emax) of 96 % in this assay. In vivo pharmacokinetic analysis indicated good brain exposure for several analogs. Our combined results provide important information towards a structurally novel class of orexin receptor agonists distinct from current chemotypes.


Asunto(s)
Imidazoles , Iminas , Receptores de Orexina/agonistas , Iminas/farmacología , Imidazoles/farmacología , Piridinas , Éteres
7.
Cancers (Basel) ; 15(24)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38136388

RESUMEN

Lung and breast cancers rank as two of the most common and lethal tumors, accounting for a substantial number of cancer-related deaths worldwide. While the past two decades have witnessed promising progress in tumor therapy, developing targeted tumor therapies continues to pose a significant challenge. NAD(P)H quinone oxidoreductase 1 (NQO1), a two-electron reductase, has been reported as a promising therapeutic target across various solid tumors. ß-Lapachone (ß-Lap) and deoxynyboquinone (DNQ) are two NQO1 bioactivatable drugs that have demonstrated potent antitumor effects. However, their curative efficacy has been constrained by adverse effects and moderate lethality. To enhance the curative potential of NQO1 bioactivatable drugs, we developed a novel DNQ derivative termed isopentyl-deoxynyboquinone (IP-DNQ). Our study revealed that IP-DNQ treatment significantly increased reactive oxygen species generation, leading to double-strand break (DSB) formation, PARP1 hyperactivation, and catastrophic energy loss. Notably, we discovered that this novel drug induced both apoptosis and programmed necrosis events, which makes it entirely distinct from other NQO1 bioactivatable drugs. Furthermore, IP-DNQ monotherapy demonstrated significant antitumor efficacy and extended mice survival in A549 orthotopic xenograft models. Lastly, we identified that in mice IP-DNQ levels were significantly elevated in the plasma and tumor compared with IB-DNQ levels. This study provides novel preclinical evidence supporting IP-DNQ efficacy in NQO1+ NSCLC and breast cancer cells.

8.
Cancer Discov ; 13(8): 1884-1903, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37262072

RESUMEN

A metabolic hallmark of cancer identified by Warburg is the increased consumption of glucose and secretion of lactate, even in the presence of oxygen. Although many tumors exhibit increased glycolytic activity, most forms of cancer rely on mitochondrial respiration for tumor growth. We report here that Hürthle cell carcinoma of the thyroid (HTC) models harboring mitochondrial DNA-encoded defects in complex I of the mitochondrial electron transport chain exhibit impaired respiration and alterations in glucose metabolism. CRISPR-Cas9 pooled screening identified glycolytic enzymes as selectively essential in complex I-mutant HTC cells. We demonstrate in cultured cells and a patient-derived xenograft model that small-molecule inhibitors of lactate dehydrogenase selectively induce an ATP crisis and cell death in HTC. This work demonstrates that complex I loss exposes fermentation as a therapeutic target in HTC and has implications for other tumors bearing mutations that irreversibly damage mitochondrial respiration. SIGNIFICANCE: HTC is enriched in somatic mtDNA mutations predicted to affect complex I of the electron transport chain (ETC). We demonstrate that these mutations impair respiration and induce a therapeutically tractable reliance on aerobic fermentation for cell survival. This work provides a rationale for targeting fermentation in cancers harboring irreversible genetically encoded ETC defects. See related article by Gopal et al., p. 1904. This article is highlighted in the In This Issue feature, p. 1749.


Asunto(s)
Adenocarcinoma , Adenoma Oxifílico , Carcinoma , Neoplasias de la Tiroides , Humanos , Fermentación , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , Adenoma Oxifílico/genética , ADN Mitocondrial/genética
9.
Biomed Pharmacother ; 162: 114614, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37068330

RESUMEN

The continuing heavy toll of the COVID-19 pandemic necessitates development of therapeutic options. We adopted structure-based drug repurposing to screen FDA-approved drugs for inhibitory effects against main protease enzyme (Mpro) substrate-binding pocket of SARS-CoV-2 for non-covalent and covalent binding. Top candidates were screened against infectious SARS-CoV-2 in a cell-based viral replication assay. Promising candidates included atovaquone, mebendazole, ouabain, dronedarone, and entacapone, although atovaquone and mebendazole were the only two candidates with IC50s that fall within their therapeutic plasma concentration. Additionally, we performed Mpro assays on the top hits, which demonstrated inhibition of Mpro by dronedarone (IC50 18 µM), mebendazole (IC50 19 µM) and entacapone (IC50 9 µM). Atovaquone showed only modest Mpro inhibition, and thus we explored other potential mechanisms. Although atovaquone is Dihydroorotate dehydrogenase (DHODH) inhibitor, we did not observe inhibition of DHODH at the respective SARS-CoV-2 IC50. Metabolomic profiling of atovaquone treated cells showed dysregulation of purine metabolism pathway metabolite, where ecto-5'-nucleotidase (NT5E) was downregulated by atovaquone at concentrations equivalent to its antiviral IC50. Atovaquone and mebendazole are promising candidates with SARS-CoV-2 antiviral activity. While mebendazole does appear to target Mpro, atovaquone may inhibit SARS-CoV-2 viral replication by targeting host purine metabolism.


Asunto(s)
Antivirales , COVID-19 , Humanos , Antivirales/farmacología , SARS-CoV-2 , Dihidroorotato Deshidrogenasa , Reposicionamiento de Medicamentos , Dronedarona/farmacología , Pandemias , Atovacuona/farmacología , Mebendazol/farmacología , Purinas/farmacología , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/farmacología , Simulación de Dinámica Molecular
11.
Cell Chem Biol ; 30(2): 214-229.e18, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36758549

RESUMEN

Glioblastoma (GBM) is an aggressive adult brain cancer with few treatment options due in part to the challenges of identifying brain-penetrant drugs. Here, we investigated the mechanism of MM0299, a tetracyclic dicarboximide with anti-glioblastoma activity. MM0299 inhibits lanosterol synthase (LSS) and diverts sterol flux away from cholesterol into a "shunt" pathway that culminates in 24(S),25-epoxycholesterol (EPC). EPC synthesis following MM0299 treatment is both necessary and sufficient to block the growth of mouse and human glioma stem-like cells by depleting cellular cholesterol. MM0299 exhibits superior selectivity for LSS over other sterol biosynthetic enzymes. Critical for its application in the brain, we report an MM0299 derivative that is orally bioavailable, brain-penetrant, and induces the production of EPC in orthotopic GBM tumors but not normal mouse brain. These studies have implications for the development of an LSS inhibitor to treat GBM or other neurologic indications.


Asunto(s)
Glioblastoma , Glioma , Adulto , Humanos , Lanosterol/farmacología , Lanosterol/metabolismo , Encéfalo/metabolismo , Glioma/tratamiento farmacológico , Glioma/metabolismo , Colesterol , Glioblastoma/tratamiento farmacológico
12.
J Sleep Res ; 32(4): e13839, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36808670

RESUMEN

The sleep disorder narcolepsy, a hypocretin deficiency disorder thought to be due to degeneration of hypothalamic hypocretin/orexin neurons, is currently treated symptomatically. We evaluated the efficacy of two small molecule hypocretin/orexin receptor-2 (HCRTR2) agonists in narcoleptic male orexin/tTA; TetO-DTA mice. TAK-925 (1-10 mg/kg, s.c.) and ARN-776 (1-10 mg/kg, i.p.) were injected 15 min before dark onset in a repeated measures design. EEG, EMG, subcutaneous temperature (Tsc ) and activity were recorded by telemetry; recordings for the first 6 h of the dark period were scored for sleep/wake and cataplexy. At all doses tested, TAK-925 and ARN-776 caused continuous wakefulness and eliminated sleep for the first hour. Both TAK-925 and ARN-776 caused dose-related delays in NREM sleep onset. All doses of TAK-925 and all but the lowest dose of ARN-776 eliminated cataplexy during the first hour after treatment; the anti-cataplectic effect of TAK-925 persisted into the second hour for the highest dose. TAK-925 and ARN-776 also reduced the cumulative amount of cataplexy during the 6 h post-dosing period. The acute increase in wakefulness produced by both HCRTR2 agonists was characterised by increased spectral power in the gamma EEG band. Although neither compound provoked a NREM sleep rebound, both compounds affected NREM EEG during the second hour post-dosing. TAK-925 and ARN-776 also increased gross motor activity, running wheel activity, and Tsc , suggesting that the wake-promoting and sleep-suppressing activities of these compounds could be a consequence of hyperactivity. Nonetheless, the anti-cataplectic activity of TAK-925 and ARN-776 is encouraging for the development of HCRTR2 agonists.


Asunto(s)
Cataplejía , Narcolepsia , Animales , Masculino , Ratones , Cataplejía/tratamiento farmacológico , Narcolepsia/tratamiento farmacológico , Receptores de Orexina/uso terapéutico , Orexinas , Sueño/fisiología , Vigilia/fisiología
13.
bioRxiv ; 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36711614

RESUMEN

In vitro systems have provided great insight into the mechanisms of antibiotic resistance. Yet, in vitro approaches cannot reflect the full complexity of what transpires within a host. As the mammalian gut is host to trillions of resident bacteria and thus a potential breeding ground for antibiotic resistance, we sought to better understand how gut bacteria respond to antibiotic treatment in vivo . Here, we colonized germ-free mice with a genetically barcoded antibiotic pan-susceptible Escherichia coli clinical isolate and then administered the antibiotic cefepime via programmable subcutaneous pumps which allowed for closer emulation of human parenteral antibiotic pharmacokinetics/dynamics. After seven days of antibiotics, we were unable to culture E. coli from feces. We were, however, able to recover barcoded E. coli from harvested gastrointestinal (GI) tissue, despite high GI tract and plasma cefepime concentrations. Strikingly, these E. coli isolates were not resistant to cefepime but had acquired mutations â€" most notably in the wbaP gene, which encodes an enzyme required for the initiation of the synthesis of the polysaccharide capsule and lipopolysaccharide O antigen - that increased their ability to invade and survive within intestinal cells, including cultured human colonocytes. Further, these E. coli mutants exhibited a persister phenotype when exposed to cefepime, allowing for greater survival to pulses of cefepime treatment when compared to the wildtype strain. Our findings highlight a mechanism by which bacteria in the gastrointestinal tract can adapt to antibiotic treatment by increasing their ability to persist during antibiotic treatment and invade intestinal epithelial cells where antibiotic concentrations are substantially reduced.

14.
ACS Cent Sci ; 9(12): 2298-2305, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38161369

RESUMEN

cGAMP is a signaling molecule produced by the cGAS-DNA complex to establish antimicrobial and antitumor immunity through STING. Whereas STING activation holds potential as a new strategy to treat cancer, cGAMP is generally considered unsuitable for in vivo use because of the rapid cleavage of its phosphodiester linkages and the limited cellular uptake under physiological conditions. Consequently, phosphorothioation and fluorination are commonly used to improve the metabolic stability and permeability of cGAMP and its synthetic analogues. We now show that methylation of the 3'-hydroxyl group of cGAMP also confers metabolic stability and that acylation of the 2'-hydroxyl group can be achieved directly and selectively to enable receptor-mediated intracellular delivery. Unlike phosphorothioation and fluorination, these modifications do not create a new stereogenic center and do not require laborious building block synthesis. As such, orthogonal hydroxyl functionalization is a simple solution to issues associated with the in vivo use of cGAMP.

15.
J Med Chem ; 65(22): 15327-15343, 2022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-36322935

RESUMEN

15-Prostaglandin dehydrogenase (15-PGDH) regulates the concentration of prostaglandin E2 in vivo. Inhibitors of 15-PGDH elevate PGE2 levels and promote tissue repair and regeneration. Here, we describe a novel class of quinoxaline amides that show potent inhibition of 15-PGDH, good oral bioavailability, and protective activity in mouse models of ulcerative colitis and recovery from bone marrow transplantation.


Asunto(s)
Hidroxiprostaglandina Deshidrogenasas , Quinoxalinas , Animales , Ratones , Colitis Ulcerosa/tratamiento farmacológico , Dinoprostona , Hidroxiprostaglandina Deshidrogenasas/antagonistas & inhibidores , Quinoxalinas/farmacología
16.
Front Oncol ; 12: 976292, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36203459

RESUMEN

Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) have exhibited great promise in the treatment of tumors with homologous recombination (HR) deficiency, however, PARPi resistance, which ultimately recovers DNA repair and cell progress, has become an enormous clinical challenge. Recently, KP372-1 was identified as a novel potential anticancer agent that targeted the redox enzyme, NAD(P)H:quinone oxidoreductase 1 (NQO1), to induce extensive reactive oxygen species (ROS) generation that amplified DNA damage, leading to cancer cell death. To overcome PARPi resistance and expand its therapeutic utility, we investigated whether a combination therapy of a sublethal dose of KP372-1 with a nontoxic dose of PARPi rucaparib would synergize and enhance lethality in NQO1 over-expressing cancers. We reported that the combination treatment of KP372-1 and rucaparib induced a transient and dramatic AKT hyperactivation that inhibited DNA repair by regulating FOXO3a/GADD45α pathway, which enhanced PARPi lethality and overcame PARPi resistance. We further found that PARP inhibition blocked KP372-1-induced PARP1 hyperactivation to reverse NAD+/ATP loss that promoted Ca2+-dependent autophagy and apoptosis. Moreover, pretreatment of cells with BAPTA-AM, a cytosolic Ca2+ chelator, dramatically rescued KP372-1- or combination treatment-induced lethality and significantly suppressed PAR formation and γH2AX activation. Finally, we demonstrated that this combination therapy enhanced accumulation of both agents in mouse tumor tissues and synergistically suppressed tumor growth in orthotopic pancreatic and non-small-cell lung cancer xenograft models. Together, our study provides novel preclinical evidence for new combination therapy in NQO1+ solid tumors that may broaden the clinical utility of PARPi.

17.
Front Pharmacol ; 13: 1020123, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36249792

RESUMEN

Background: An in silico screen was performed to identify FDA approved drugs that inhibit SARS-CoV-2 main protease (Mpro), followed by in vitro viral replication assays, and in vivo pharmacokinetic studies in mice. These studies identified atovaquone as a promising candidate for inhibiting viral replication. Methods: A 2-center, randomized, double-blind, placebo-controlled trial was performed among patients hospitalized with COVID-19 infection. Enrolled patients were randomized 2:1 to atovaquone 1500 mg BID versus matched placebo. Patients received standard of care treatment including remdesivir, dexamethasone, or convalescent plasma as deemed necessary by the treating team. Saliva was collected at baseline and twice per day for up to 10 days for RNA extraction for SARS-CoV-2 viral load measurement by quantitative reverse-transcriptase PCR. The primary outcome was the between group difference in log-transformed viral load (copies/mL) using a generalized linear mixed-effect models of repeated measures from all samples. Results: Of the 61 patients enrolled; 41 received atovaquone and 19 received placebo. Overall, the population was predominately male (63%) and Hispanic (70%), with a mean age of 51 years, enrolled a mean of 5 days from symptom onset. The log10 viral load was 5.25 copies/mL vs. 4.79 copies/mL at baseline in the atovaquone vs. placebo group. Change in viral load did not differ over time between the atovaquone plus standard of care arm versus the placebo plus standard of care arm. Pharmacokinetic (PK) studies of atovaquone plasma concentration demonstrated a wide variation in atovaquone levels, with an inverse correlation between BMI and atovaquone levels, (Rho -0.45, p = 0.02). In post hoc analysis, an inverse correlation was observed between atovaquone levels and viral load (Rho -0.54, p = 0.005). Conclusion: In this prospective, randomized, placebo-controlled trial, atovaquone did not demonstrate evidence of enhanced SARS-CoV-2 viral clearance compared with placebo. However, based on the observed inverse correlation between atovaquone levels and viral load, additional PK-guided studies may be warranted to examine the antiviral effect of atovaquone in COVID-19 patients.

18.
ACS Med Chem Lett ; 13(9): 1510-1516, 2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36105331

RESUMEN

Autophagy plays essential roles in a wide variety of physiological processes, such as cellular homeostasis, metabolism, development, differentiation, and immunity. Selective pharmacological modulation of autophagy is considered a valuable potential therapeutic approach to treat diverse human diseases. However, development of such therapies has been greatly impeded by the lack of specific small molecule autophagy modulators. Here, we performed structure-activity relationship studies on a previously discovered weak Bcl-2 inhibitor SW076956, and developed a panel of small molecule compounds that selectively released Bcl-2-mediated inhibition of autophagy-related Beclin 1 compared to apoptosis-related Bax at nanomolar concentration. Our NMR analysis showed that compound 35 directly binds Bcl-2 and specifically inhibits the interaction between the Bcl-2 and Beclin 1 BH3 domains without disruption of the Bcl-2-Bax BH3 interaction. More broadly, this proof-of-concept study demonstrates that targeting protein-protein interactions of the intrinsic autophagy regulatory network can serve as a valuable strategy for the development of autophagy-based therapeutics.

19.
Biochem Pharmacol ; 204: 115237, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36055381

RESUMEN

Dihydroorotate dehydrogenase (DHODH) catalyzes a key step in pyrimidine biosynthesis and has recently been validated as a therapeutic target for malaria through clinical studies on the triazolopyrimidine-based Plasmodium DHODH inhibitor DSM265. Selective toxicity towards Plasmodium species could be achieved because malaria parasites lack pyrimidine salvage pathways, and DSM265 selectively inhibits Plasmodium DHODH over the human enzyme. However, while DSM265 does not inhibit human DHODH, it inhibits DHODH from several preclinical species, including mice, suggesting that toxicity could result from on-target DHODH inhibition in those species. We describe here the use of dihydroorotate (DHO) as a biomarker of DHODH inhibition. Treatment of mammalian cells with DSM265 or the mammalian DHODH inhibitor teriflunomide led to increases in DHO where the extent of biomarker buildup correlated with both dose and inhibitor potency on DHODH. Treatment of mice with leflunomide (teriflunomide prodrug) caused a large dose-dependent buildup of DHO in blood (up to 16-fold) and urine (up to 5,400-fold) that was not observed for mice treated with DSM265. Unbound plasma teriflunomide levels reached 20-85-fold above the mouse DHODH IC50, while free DSM265 levels were only 1.6-4.2-fold above, barely achieving âˆ¼ IC90 concentrations, suggesting that unbound DSM265 plasma levels are not sufficient to block the pathway in vivo. Thus, any toxicity associated with DSM265 treatment in mice is likely caused by off-target mechanisms. The identification of a robust biomarker for mammalian DHODH inhibition represents an important advance to generally monitor for on-target effects in preclinical and clinical applications of DHODH inhibitors used to treat human disease.


Asunto(s)
Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Profármacos , Animales , Biomarcadores , Crotonatos , Dihidroorotato Deshidrogenasa , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Humanos , Hidroxibutiratos , Leflunamida/farmacología , Leflunamida/uso terapéutico , Mamíferos/metabolismo , Ratones , Nitrilos , Plasmodium falciparum/metabolismo , Profármacos/farmacología , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Toluidinas
20.
JCI Insight ; 7(17)2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-35881485

RESUMEN

Acquired mutations in the ligand-binding domain (LBD) of the gene encoding estrogen receptor α (ESR1) are common mechanisms of endocrine therapy resistance in patients with metastatic ER+ breast cancer. The ESR1 Y537S mutation, in particular, is associated with development of resistance to most endocrine therapies used to treat breast cancer. Employing a high-throughput screen of nearly 1,200 Federal Drug Administration-approved (FDA-approved) drugs, we show that OTX015, a bromodomain and extraterminal domain (BET) inhibitor, is one of the top suppressors of ESR1 mutant cell growth. OTX015 was more efficacious than fulvestrant, a selective ER degrader, in inhibiting ESR1 mutant xenograft growth. When combined with abemaciclib, a CDK4/6 inhibitor, OTX015 induced more potent tumor regression than current standard-of-care treatment of abemaciclib + fulvestrant. OTX015 has preferential activity against Y537S mutant breast cancer cells and blocks their clonal selection in competition studies with WT cells. Thus, BET inhibition has the potential to both prevent and overcome ESR1 mutant-induced endocrine therapy resistance in breast cancer.


Asunto(s)
Neoplasias de la Mama , Receptor alfa de Estrógeno/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proliferación Celular , Femenino , Fulvestrant/farmacología , Fulvestrant/uso terapéutico , Humanos , Mutación , Dominios Proteicos , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA